98 research outputs found

    A Web-Based Collaborative Multimedia Presentation Document System

    Get PDF
    With the distributed and rapidly increasing volume of data and expeditious development of modern web browsers, web browsers have become a possible legitimate vehicle for remote interactive multimedia presentation and collaboration, especially for geographically dispersed teams. To our knowledge, although there are a large number of applications developed for these purposes, there are some drawbacks in prior work including the lack of interactive controls of presentation flows, general-purpose collaboration support on multimedia, and efficient and precise replay of presentations. To fill the research gaps in prior work, in this dissertation, we propose a web-based multimedia collaborative presentation document system, which models a presentation as media resources together with a stream of media events, attached to associated media objects. It represents presentation flows and collaboration actions in events, implements temporal and spatial scheduling on multimedia objects, and supports real-time interactive control of the predefined schedules. As all events are represented by simple messages with an object-prioritized approach, our platform can also support fine-grained precise replay of presentations. Hundreds of kilobytes could be enough to store the events in a collaborative presentation session for accurate replays, compared with hundreds of megabytes in screen recording tools with a pixel-based replay mechanism

    Metadata Caching in Presto: Towards Fast Data Processing

    Full text link
    Presto is an open-source distributed SQL query engine for OLAP, aiming for "SQL on everything". Since open-sourced in 2013, Presto has been consistently gaining popularity in large-scale data analytics and attracting adoption from a wide range of enterprises. From the development and operation of Presto, we witnessed a significant amount of CPU consumption on parsing column-oriented data files in Presto worker nodes. This blocks some companies, including Meta, from increasing analytical data volumes. In this paper, we present a metadata caching layer, built on top of the Alluxio SDK cache and incorporated in each Presto worker node, to cache the intermediate results in file parsing. The metadata cache provides two caching methods: caching the decompressed metadata bytes from raw data files and caching the deserialized metadata objects. Our evaluation of the TPC-DS benchmark on Presto demonstrates that when the cache is warm, the first method can reduce the query's CPU consumption by 10%-20%, whereas the second method can minimize the CPU usage by 20%-40%.Comment: 5 pages, 8 figure

    Augmenting Pathologists with NaviPath: Design and Evaluation of a Human-AI Collaborative Navigation System

    Full text link
    Artificial Intelligence (AI) brings advancements to support pathologists in navigating high-resolution tumor images to search for pathology patterns of interest. However, existing AI-assisted tools have not realized this promised potential due to a lack of insight into pathology and HCI considerations for pathologists' navigation workflows in practice. We first conducted a formative study with six medical professionals in pathology to capture their navigation strategies. By incorporating our observations along with the pathologists' domain knowledge, we designed NaviPath -- a human-AI collaborative navigation system. An evaluation study with 15 medical professionals in pathology indicated that: (i) compared to the manual navigation, participants saw more than twice the number of pathological patterns in unit time with NaviPath, and (ii) participants achieved higher precision and recall against the AI and the manual navigation on average. Further qualitative analysis revealed that navigation was more consistent with NaviPath, which can improve the overall examination quality.Comment: Accepted ACM CHI Conference on Human Factors in Computing Systems (CHI '23

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    RCE-GAN: A Rebar Clutter Elimination Network to Improve Tunnel Lining Void Detection from GPR Images

    No full text
    Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a method to improve the identification of tunnel lining voids by designing a generative adversarial network-based rebar clutter elimination network (RCE-GAN). The designed network has two sets of generators and discriminators, and by introducing the cycle-consistency loss, the network is capable of learning high-level features between unpaired GPR images. In addition, an attention module and a dilation center part were designed in the network to improve the network performance. Validation of the proposed method was conducted on both synthetic and real-world GPR images, collected from the implementation of finite-difference time-domain (FDTD) simulations and a controlled physical model experiment, respectively. The results demonstrate that the proposed method is promising for its lower demand on the training dataset and the improvement in the identification of tunnel lining voids
    corecore